aut aut      aut aut
   
Maryam Amir Mazlaghani
  Courses 

 ٍEngineering Mathematics(FALL_2017)

Aims:

studying Fourier Series, Fourier Transform, Partial Differential Equations, complex analysis, complex integration

Syllabus:

  • orthogonal functions, Fourier series
  • Fourier Integral
  • Fourier Transform and characteristics
  • Partial Differential Equations (PDE)
  • Heat Equation, Wave Equation
  • Solving PDE by Separating Variables
  • solving PDE by Using Fourier Series and Laplace Transform
  • solving PDEs in two dimensions
  • complex numbers
  • complex functions
  • conformal mapping
  • Line Integral in the Complex Plane
  • Cauchy’s Integral Theorem
  • power series
  • Residue Integration Method
  • computing real integral using complex integration

Text Book:

  • E kreyszig , Advanced Engineering Mathematics, 10 th ed. Wiley, 2011.
  • عبدالله شيدفر، رياضيات مهندسي، چاپ شانزدهم، انتشارات دالفك، 1390.


 ٍEngineering Mathematics(FALL_2017)

Aims:

studying Fourier Series, Fourier Transform, Partial Differential Equations, complex analysis, complex integration

Syllabus:

  • orthogonal functions, Fourier series
  • Fourier Integral
  • Fourier Transform and characteristics
  • Partial Differential Equations (PDE)
  • Heat Equation, Wave Equation
  • Solving PDE by Separating Variables
  • solving PDE by Using Fourier Series and Laplace Transform
  • solving PDEs in two dimensions
  • complex numbers
  • complex functions
  • conformal mapping
  • Line Integral in the Complex Plane
  • Cauchy’s Integral Theorem
  • power series
  • Residue Integration Method
  • computing real integral using complex integration

Text Book:

  • E kreyszig , Advanced Engineering Mathematics, 10 th ed. Wiley, 2011.
  • عبدالله شيدفر، رياضيات مهندسي، چاپ شانزدهم، انتشارات دالفك، 1390.


 Optimization(FALL_2017)

Aims:

studying optimization algorithms and their conditions- studying optimization applications

Syllabus:

  • introduction
  • mathematical background
  • convex sets
  • convex functions
  • convex optimization problems
  • duality and optimality conditions
  • optimization application in approximation
  • optimization application in statistical estimation
  • optimization applications in geometric problems
  • unconstrained optimization algorithms
  • equality constrained optimization algorithms
  • constrained optimization algorithms

Text Book:

  • S. Boyed, L. Vandenberg, Convex optimization, Cambridg, 2004
  • J. Nocedal, S. J. Wright, Numerical Optimization, Springer, 1999
  • D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, Springer, Thired Edition 2008.


 Electronic Circuits(SPRING_2017)

Aims:

analysis and design of electronical circuits

Syllabus:

  • Introduction to electronics-Physics
  • Pn Junction Diode
  • Diode Circuits
  • Bipolar Transistors
  • Bjt Amplifiers
  • Field Effect Transistors
  • MOSFET(Metal oxide Semiconductor FET) Amplifiers

Text Book:

  • Fundamentals of Microelectronics
  • microelectronics circuits


 ٍEngineering Mathematics(SPRING_2017)

Aims:

studying Fourier Series, Fourier Transform, Partial Differential Equations, complex analysis, complex integration

Syllabus:

  • orthogonal functions, Fourier series
  • Fourier Integral
  • Fourier Transform and characteristics
  • Partial Differential Equations (PDE)
  • Heat Equation, Wave Equation
  • Solving PDE by Separating Variables
  • solving PDE by Using Fourier Series and Laplace Transform
  • solving PDEs in two dimensions
  • complex numbers
  • complex functions
  • conformal mapping
  • Line Integral in the Complex Plane
  • Cauchy’s Integral Theorem
  • power series
  • Residue Integration Method
  • computing real integral using complex integration

Text Book:

  • E kreyszig , Advanced Engineering Mathematics, 10 th ed. Wiley, 2011.
  • عبدالله شيدفر، رياضيات مهندسي، چاپ شانزدهم، انتشارات دالفك، 1390.


 Special Topics(SPRING_2017)

Aims:

To make the students fundamentally acquainted with stochastic processes and their applications in Computer Engineering.

Syllabus:

  • مروري بر تئوري احتمال
  • Review of Random Variables
  • Sequence of Random Variables
  • Estimation Theory
  • Detection Theory
  • Stochastic Processes
  • Stationarity
  • Stochastic Linear Systems
  • Power Spectral Density
  • Ergodicity
  • Markov Processes
  • Markov Chains
  • Prediction and Filtering
  • Hidden Markov Models
  • Monte Carlo Methods

Text Book:

  • A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic Processes, 4th Edition, McGraw Hill, 2002.


 ٍEngineering Mathematics(FALL_2016)

Aims:

studying Fourier Series, Fourier Transform, Partial Differential Equations, complex analysis, complex integration

Syllabus:

  • orthogonal functions, Fourier series
  • Fourier Integral
  • Fourier Transform and characteristics
  • Partial Differential Equations (PDE)
  • Heat Equation, Wave Equation
  • Solving PDE by Separating Variables
  • solving PDE by Using Fourier Series and Laplace Transform
  • solving PDEs in two dimensions
  • complex numbers
  • complex functions
  • conformal mapping
  • Line Integral in the Complex Plane
  • Cauchy’s Integral Theorem
  • power series
  • Residue Integration Method
  • computing real integral using complex integration

Text Book:

  • E kreyszig , Advanced Engineering Mathematics, 10 th ed. Wiley, 2011.
  • عبدالله شيدفر، رياضيات مهندسي، چاپ شانزدهم، انتشارات دالفك، 1390.


 Optimization(FALL_2016)

Aims:

studying optimization algorithms and their conditions- studying optimization applications

Syllabus:

  • introduction
  • mathematical background
  • convex sets
  • convex functions
  • convex optimization problems
  • duality and optimality conditions
  • optimization application in approximation
  • optimization application in statistical estimation
  • optimization applications in geometric problems
  • unconstrained optimization algorithms
  • equality constrained optimization algorithms
  • constrained optimization algorithms

Text Book:

  • S. Boyed, L. Vandenberg, Convex optimization, Cambridg, 2004
  • J. Nocedal, S. J. Wright, Numerical Optimization, Springer, 1999
  • D. G. Luenberger, Y. Ye, Linear and Nonlinear Programming, Springer, Thired Edition 2008.


 Electronic Circuits(SPRING_2016)

Aims:

analysis and design of electronical circuits

Syllabus:

  • Introduction to electronics-Physics
  • Pn Junction Diode
  • Diode Circuits
  • Bipolar Transistors
  • Bjt Amplifiers
  • Field Effect Transistors
  • MOSFET(Metal oxide Semiconductor FET) Amplifiers

Text Book:

  • Fundamentals of Microelectronics
  • microelectronics circuits


 Special Topics(SPRING_2016)

Aims:

To make the students fundamentally acquainted with stochastic processes and their applications in Computer Engineering.

Syllabus:

  • مروري بر تئوري احتمال
  • Review of Random Variables
  • Sequence of Random Variables
  • Estimation Theory
  • Detection Theory
  • Stochastic Processes
  • Stationarity
  • Stochastic Linear Systems
  • Power Spectral Density
  • Ergodicity
  • Markov Processes
  • Markov Chains
  • Queuing Theory
  • Prediction and Filtering
  • Hidden Markov Models

Text Book:

  • A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic Processes, 4th Edition, McGraw Hill, 2002.


 
 
© AUT All rights reserved.
AUT is not responsible for the content of external sites.
 
424 Hafez Ave, Tehran, Iran, 15875-4413. +98 (21) 64540